
Software
bert@hubertnet.nl / https://berthub.eu/ 

https://berthub.eu/les/ 

mailto:bert@hubertnet.nl
https://berthub.eu/
https://berthub.eu/les/


PowerDNS: 1999 - 2020

Places my company worked with or was involved with negotiations & contracts



The internet gave me an award, I’m an officially recognized nerd. 
https://berthub.eu/articles/posts/nluug-award/ 

https://berthub.eu/articles/posts/nluug-award/


I was a member of a panel with two judges that had to rule on all warrants from the 
dutch intelligence/security agencies



?
I wasn’t sure exactly what to talk about. The request was ‘software, source code, and 
lots of examples’ so here goes



This is a representative bit of code, showing 5 common elements



This is the output of the computer program - it prints the 1,2,3 that was stored in 
variable v



Computers don’t actually run source code directly (mostly). They run machine code, 
as shown in this table. Machine code is easy to read for computers and hard to write 
for people. Source code, as shown earlier, is hard to read and write for both 
computers and people. So it is a compromise where everyone loses. 



COMMENTS

Comments! They are full of problems. For one, the computer does not read them. So 
the comments can be full of wise words, but the code can then do different things. Of 
special note is that programmers for a variety of reasons put legal statements in 
comments. These include incorrect copyright statements, but also license texts that 
may or may not apply. If you audit the source code of any company you’ll find lots of 
code with © other companies in there, but that is not itself a problem. That code may 
be licensed freely. Comments however are often wrong or misleading. They can help 
you figure out where code came from though, which could be helpful. 



SYSTEM 
LIBRARY

Source code will ALWAYS build on ‘system libraries’. So to store numbers, as is 
shown here, you’ll rely on the system code. This system code is always licensed such 
that when you incorporate it in your computer code, the resulting computer program 
(executable, binary) is *unencumbered*, so you get a license to ship programs 
containing system code. It is almost never a thing to worry about. 



Third party 
library

This tiny computer program relies on a third party product called ‘fmt’, mostly 
developed by a Meta employee. Fmt is licensed very freely so we can use this code 
without any worries. To spot ‘fmt’ as third party requires a good eye and domain 
knowledge - in this case the #include <fmt/> prefix and the fmt:: later on. Third party 
code becomes part of your product, and with that your computer program becomes a 
derived work. You should care very deeply about the provenance and licensing of 
third party code. 

There is declared and undeclared third party code. Declared is as above when it is 
clearly something that is ‘included’ from somewhere else. Staff may however also 
have copy pasted third party code into your source code, and not been explicit about 
this. There are companies that will nevertheless recognize this third party code for 
you, which you may have to do in an M&A situation.



Thing that 
just has to 
be that way

Some code has no “originality” or artistic freedom and just has to be like that. This 
means that 100% identical code can be found between Apple source code and Red 
Hat source code without this being a copyright violation. We’ll touch on this in a later 
slide.



Elements of source code

● Comments: no influence over what the code DOES (usually)
○ May include attempts at legal statements & disclaimers
○ Suitable for forensics: where did this code come from?

● References to system libraries / components (“2nd party”)
● References to third party libraries
● Ritualistic invocations, technical details (“main()”)
● Actual code instructions for this computer program

Access to source code means nothing. Is like having a copy of a book. No rights 
are conferred. 

Source code is not as great as people think. Not the crown jewels.



Operating system runs:

Source Code

System 
Libraries

3rd party 
Libraries

Compiler & 
linker Executable

Executable

Schematically - you need to add system libraries and 3rd party libraries to your source 
code before it is complete. That combination is then processed by a compiler & linker 
(or interpreter), and this delivers a program you can start, often called an ‘executable’. 
This executable meanwhile still also can’t run itself, it needs an operating system to 
do so. 



Dynamic libraries: kernel interface, C++, compiler internals, C library, math 
library, dynamic system loader

© IBM, HP (DEC, COMPAQ), Oracle, Free Software Foundation, Apple, Google, tons of universities, ancient 
corporations, THOUSANDS of parties

Static library: fmt formatting library

© Victor Zverovich, plus HUNDREDS of contributors.

This slide was by special request: I was asked to comment on static and dynamic 
linking. However, if this is an issue for your company, you’ll find that this is very 
complicated. I mostly show these numbers to indicate how difficult it all is.



These libraries are all 
dependencies. Each 
“dep” requires a license 
that allows you to ship an 
executable.

There are very permissive open source software licenses that allow you to do almost 
anything with the source code covered by it. But there are also many other more 
complicated licenses.



If you ever need to do 
battle over impact of 
static or dynamic linking 
or plugins: hire the 
best.
(or give up)

Some licenses have different rules for statically and dynamically linked dependencies. 
This stuff is exceptionally difficult. If you are ever forced to play this game, hire the 
very best technical support you can find. The cost of messing it up is huge.



On an iPhone, go to: 

● Settings
● General
● Legal & Regulatory
● Legal Notices. 

Try to scroll to the end!

https://xkcd.com/2347/ - modern software depends on soooo much other software. 
The picture on the left is accurate. I’m so happy many of you joined the exercise on 
the right to try to scroll down to the end of the iPhone ‘legal notices’ about third party 
software. You can’t reach the end. That page is thousands of screens long! Android 
has a similar page somewhere.

https://xkcd.com/2347/


1000s of 
dependencies!

Changes every 
day also!

Modern ‘node.js / npm’ based software easily racks up thousands of dependencies. 
These are gathered dynamically when the software is assembled. This list of 
dependencies changes daily. You need special tooling to create these graphs. The 
number of dependencies is so large that you can’t manually audit them, or even 
investigate by hand.



Things to watch out for

● No visibility in what is being shipped
● You are on the hook legally though - need explicit licenses
● Who knows if dependencies own the code they ship
● Effectively you can’t keep track
● Of specific note for M&A



“The Skype founders apparently retained 
the service's peer-to-peer sharing 
technology when they sold to eBay for 
$2.6bn in 2005. (Which, of course, begs the 
question why eBay would pay all that money 
without ensuring they own the entire 
platform).”

https://www.theregister.com/2009/06/26/skype_trial_could_hurt_ipo/ 
https://web.archive.org/web/20121118205740/http://blogs.skype.com/en/2009/11/jolti
d_settlement.html fascinating stuff. I’ve experienced something similar twice in my 
own personal contractual dealings.

https://www.theregister.com/2009/06/26/skype_trial_could_hurt_ipo/
https://web.archive.org/web/20121118205740/http://blogs.skype.com/en/2009/11/joltid_settlement.html
https://web.archive.org/web/20121118205740/http://blogs.skype.com/en/2009/11/joltid_settlement.html


https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-pie
ce-of-code 
https://www.theregister.com/2016/03/23/npm_left_pad_chaos/ 

https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code
https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code
https://www.theregister.com/2016/03/23/npm_left_pad_chaos/


Thing that 
just has to 
be that way

So what can be copyrighted? I noted earlier that “some bits of code” just have to be 
like that. As programmers we’ve always been convinced this was true. For example, 
an internet data packet has a fixed *header* that tells you where a packet comes from 
and where it has to go. A technical description of that header had always been 
assumed to be a technical detail and not artistic expression. However…



Enter Oracle. Oracle thought that Google using such technical details was a copyright 
violation. After a decade of lawsuits, the US supreme court sidestepped really ruling 
on the issue and called it ‘fair use’. But a cloud still hangs over US copyright right 
now. The situation in Europe appears to be clear though.



Further things to watch out for

● Upcoming: EU Cyber Resilience Act, Product Liability Directive
● Put you up the hook for whatever you ship

○ Including dependencies!
● Software becomes a “real product”

○

This is the future. You will be on the hook for whatever software you ship. And 
customers can hold you liable, just as if you were selling a toothbrush. This will 
become reality in 2026 but the time to start preparing is NOW.



Software
bert@hubertnet.nl / https://berthub.eu/ 

https://berthub.eu/les/ 

mailto:bert@hubertnet.nl
https://berthub.eu/
https://berthub.eu/les/

